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THE INTAKE OF PURIFIED FRESH WATER WITH FILTRATION FROM A RESERVOIR* 

E.N. BERESLAVSKII 

A planar formulation is used to study the filtration flow of fresh water above saline 
water, in the general case when the flow consists of several streams moving in different 
directions. The problem is reduced to the study of a second-order linear differential 
equation of Fuchs class, with four regular singularities, whose integration encounters, as 
shows in /l, 2/, major mathematical difficulties. In order to construct the integrals and 
determine the unknown constants appearing in the corresponding Fuchs equation, it is 
proposed to employ the method described in /3/, and the solution of the problem is given in 
closed form in terms of elementary functions. The solution obtained is used to derive the 
algorithm for computing the size of the lens, and the influence of all factors governing the 
flow on its filtration characteristics is analysed. In addition to the special case /4/ in 
which the stream line separating the drained and evaporating flows within the lens passes 
into the lower corner point of the line of separation, limit cases related to the 
"solidification" of saline water and the lack of drainage /5-8/ are also discussed. 

1. Formulation of the problem. Fig.1 shows schematically the right-hand half of the 
transverse cross-section of the fresh water lens formed in the homogeneous and isotropic soil 
above the saline waters at rest, under the condition of steady filtration from a reservoir or 
canal. The reservoir is modelled by a horizontal segment of length 2.2, and the depth of water 
in the reservoir is assumed to be infinitely small. Let one part of the flbw passing from the 
reservoir to the soil evaporate from the free surface of the lens at a constant rate e referred 
to the soil filtration coefficient x), and let the other part flow through a horizontal drain 
of diameter D, inserted in the plane of symmetry of the reservoir, at a depth S below it. The 
intake of fresh purified water is, under these conditions, of well-known practical interest. 

Let us introduce the complex potential of the flow o= 'p+i\c1 and the complex coordinate 
of the points belonging to the domain of motion z= xi- iy referred, respectively, to XT and 
T, where T is the depth of the horizontal surface of saline water outside the lens, measured 
from the plane y = 0. During the initial investigation we replace the drain by a point sink 
situated at the point M. 

The problem consists of determining the depression curve CD and the line of separation 
BC under the following boundary conditions: 

AM : I A 0, I& == 0; MB : z = 0, $I = Qd 

AD:y=O, v=OO,BC:q--_y=T(l+p),$=& 

CD : rp+ y = 0, $I + 65 = Qe/2 + EZ 
(Qd = Q& - Qo. Q, = e (L - i), P = ~a/& - 1> e) 

(1.1) 

Here Q; and Qd are the corresponding filtration flows from the reservoir (per unit 
length) and the drain, Qe is the value of the total evaporation from the free surface of the 
lens within the region in question, and p1 and pz are the densities of the fresh and saline 
water respectively. In addition to determining the size of the lens (width 2L, maximum 
depth H, and the depth H at the intersection by the plane z= O), we also determine the flows 
Qt. Qd and Q,. 

In order to solve the problem we introduce the auxiliary variable E=c+iq, and the 
functions: 2 (5). which maps conformally the upper semiplane 5 onto the region z (the cor- 
respondence of the points is shown in Fig.2a), the complex velocity w= doidn, and the functions 

F (5) = do/& Z (5) = dzldg (1.2) 

2. Integrating the Fuchs-class equations with four singularities. Fig.3 shows the region 
of complex velocity corresponding to the boundary conditions (1.1) and representing a circular 
quadrangle. The region is characterized by the presence of a cut, whose configuration depends 
on the position of the central point N, i.e. of the point of zero velocity at the boundary of 
the domain of motion. The circular cut BGC corresponds to the case when the point of separation 
of the flows lies on the line of separation BC (the dashed in Fig.3) when that point arrives 
at the segment BM. 
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Fig.1 

In order to map conformally the given circular quadrangle onto a half-plane, we must 
construct two integrals of the following second-order linear differential equations: 

Fig.3 
I b 
a 

Fig.2 

of EVchs class, with four regular singularities. We know /l, 21 that difficulties are 
encountered when integrating such equations. The difficulties are caused by the fact that 
the coefficients of Eq.(2.1) contain, apart from the undetermined quantity g, also a so-called 
accessory parameter h, which is also not known in advance. These parameters, which cannot be 
fully determined from the geometrical characteristics of the quadrangle, must be determined 
simultaneously when constructing the integrals, but there is as yetno method of solving this 
problem which is sufficiently general and convenient. We must therefore resort to various 
indirect methods, and here we must mention, before anything else, the papers /g-11/ which use 
the problem of linear conjugation. 

We shall show that in the present case Eq.(2.1) allows a direct determination of particular 
solutions expressed in terms of elementary functions. 

We will make the following change of variables in Eq.(2.1): 
S = th" t (2.2) 

which maps the upper half-plane 5 onto the half-strip e>O, O<u<n/Z of the plane t=u+ iu 
(Fig.ab), and following /3/ we shall seek two linearly independent solutions of the equation 
obtained in the form 

“,,z = ci~t-‘-~ (&chat + C,) 

Here we take the upper expression within the braces for the first integral, and the lower 
expression for the second integral, C, and C, are certain constants which do not vanish 
simultaneously, and C,-t 2G#O and 3C,+ ZC,+C,v"#O. We can confirm by direct substitution 
that the result of substituting (2.3) into the transformed Eq.(2.1) vanishes identically, 
provided that the following two conditions hold: 

[C,v (Y - 1)+ c, (3V2 -Y - 2)) g + (C, + C,)h = 0 (2.4) 
[C,V (Y - 1) + zc, (YE + 31 g+ CJ = 2 cc, + 2CJ 

Using system (2.4), whose determinant is not zero under the conditions given above imposed 
on the constants C, and C,, we find the required parameters in the form 

CPV - Cl’ 
g=i- Ca(3C,+2C*+CaV*) ’ h= 

C,(z+gV-gv*) ~Ca(4--4g--2gv*) 
Cl (2.5) 

We note that if we use Liouville's formula /2/ (v,/u,)' = c exp (- Sp (5) df)/vf. where P (5) 
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is the coefficient of V' in (2.1) and use (2.3), we again arrive at the relation (2.5). If 
on the other hand we regard (2.4) as a system in C, and C, with g and h given, then in 
order for the homogeneous system to have a non-zero solution it is necessary and sufficient 
that its determinant be zero 

1.2 -- 2). [g (3 -1 V - v2) - I] ; g (1 -v)(z]+ V)[6'Y (3 - Y) + 21 = 0 (2.6) 

It is interesting to note that (2.6) is identical with the well-known condition of 
Polubarinova-Kochina for the point G which represents the tip of the cut /6/. 

3. Constructing the function W,P and Z. A function which maps conformally a half-strip 
of the t plane onto a given circular quadrangle of the w plane must be expressed as the ratio 
of linear combinations of the solutions vI and cz. If we construct such combinations and use 
the correspondence of the points B, C and D in the t and w planes, we obtain 

W=+=YP&g (3.1) 

v = V&/l@ + I)@ - E)l, Y = zn- arcctg V/e (p + i)/(P - e) 

We will determine the functions F and Z using Polubarinova-Kochina's method /l/. Taking 
into account relations (3.1) and (2.2) we obtain 

doidt = C [(ch2 t + A) sh vt + ‘irv A sh 2 ch vtlih 

daidt = C (yp)-’ [(chz t + A)(ch vt + iy sh vt) + ‘i,vA sh 2tX 

(sh vt + iy ch yt)]/A, A = (m + sh* t)I/a+ sh*t 

(3.2) 

c=c1>0, a+(l-m) vI/m(i-mm)- 
[--- 

Yt-6 
l--y&-- 11 

6 = tg Y arcsin I/C 

Here A is a constant controlling the position of the cut in the W plane. When A <--v-l, - 
l<A<--'I2 or +<A, we have a circular cut, for -3/(2++)< A <-I or --'ln<A<O we have 
a vertical cut,and when A = --'I2 the cut disappears and the circular quadrangle degenerates 
into a triangle. 

It can be confirmed that the functions (1.2) defined with help of relations (3.2) and 
(2.2) satisfy the boundary conditions (1.1) written in terms of these functions, and represent 
therefore a parametric solution of the initial problem. 

4. Computing the flow pattern. Eqs.13.2) serve as the solution of the problem for a 
point sink. Let us extend the results obtained to the case of a drain pipe of small, nearly 
semicircular cross-section. To do this we take, as the contour, the line of equal pressure 
passing through the upper point M. of the cross-section of the pipe of diameter D, and we 
denote by u the ordinate of this point in the t plane. We find that, as a result, Eq.(3.2) 
will contain four unknown constants: C, a, m and u, and we use in their determination the 
width of the reservoir 22, the pipe diameter D, the depth of its insertion S, and the depth 
T of the horizontal surface of saline water outside the lens. 

Eqs.(3.2), which can be integrated over various segments of the boundary of the region t 
lead to parametric equations for the corresponding sections of the scheme. We confirm the 
monotonic form of the functions in these equations using numerical methods and establish in 
this manner the unique solvability of the system relative to the unknown constants 

Table 1 

Table 2 
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Having found the required parameters, we determine the dimensions ZL,H, and H of the 

lens, the pressure h,, in the drain, and the flow rates Qc.Qd and Qe, and find the coordinates 

of the points of the depression curve and free surface. Fig.1 depicts a lens computed for 

T = 1; 1 = 1.2: D := 0.2; s = 0.4; E = 0.1 and p = 0.3. 

5. SpeciaZ and limiting cases. We shall mention certain special and limiting cases con- 

nected with the degeneration of the complex velocity region and with the limiting values of 
the mapping parameters. 

A. When A = --‘izv the circular quadrangle degenerates as was shown above, to a triangle. 
In the z plane this value of A corresponds to the special case of a flow in which the stream 
line dividing the draining and evaporating flows within the lens arrives at the point B, i.e. 
when the points B and N coincide /4/. 

B. When p= m, i.e. pl= m, we have a case which can be treated within the framework 

of the filtration scheme used here and "congealment" of saline water. The formulas obtained 

lead to a solution of the problem of the inflow of fresh water to the drain, when there is no 
separation bounary, but a water-confining stratum exists at a finite depth. If in addition 
l=m, then the ground surface becomes completely flooded. This case was first studied in 

/12/. Integrating Eqs.(3.2) with E= o we obtain 

z = T (2~‘I - i) 

(I) = Qd [‘Iti + n-l arth (1/l - m/ch t)] 

(5.1). 

and we find that p = V,nT-' (T - S - l!*D). From (5.1) we can obtain a well-known formula /13/ con- 
necting the filtration flow rate Qd through the drain with the pressure head h, along the 
drain contour. 

C. When there is no drain and all filtration flow from the reservoir goes to evaporation, 
the region of complex velocity also degenerated into a triangle. In this case the solution 
of the problem /5-7/ can be obtained from relations (3.2) for m= 1,A = 0. If in addition we 
have p=m, then we have the special case which was discussed in /14/. 

6. Assessment of nwnericat resutts. Tables 1 and 2 give the results of computing thefil- 
tration characteristics, based on clarifying the influence of the Parameters 1,D. S, e and pan 
the flow pattern. Only one of the parameters is varied in each section of the table, and the 
remaining parameters are fixed for the values 1 = 1,~ = 0.2, S = 0.4, e = 0.1 and p = 0.3. Moreover, 
the quantity 6= H,l(zL)/7/ appears in the table reflecting, to a certain degree, the form of 
the lens. When F is varied, the quantity characterizes the degree of elongation of the lens, 
and for fixed e it expresses its degree of compression. The results enable us to draw certain 
conclusions concerning the effect of the physical parameters on the form and size of the lens, 
and also on the character of the dependence of filtration flow rates Qc and Qd. 

The qualitative agreement between the results when the parameters 
varied in Table 1 and the parameters 

I(1 > 0.9) and p are 
F,D and S in Table 2, merits our attention. When the 

values of pie are equal, the quantity S remains practically unchanged, i.e. reducing the 
parameters e and p the same number of times leads to a uniform increase in the size of the 
lens. For example, for P/E= 3 we have 6= 0.32. 

Table 2 shows that the diameter of the drain and depth of its placement have no effect 
on the size of the lens, since they lead to insignificant changes in the values of 2L and 4 
!by a factor of 1.1--1.2) , 
of evaporation e, 

and this in turn affects the quantity 6 only slightly.The intensity 
and the width of the reservoir exert the greatest influence on the lens 

width. Thus from Table 1 it follows that when the value of e is reduced from 0.25 to 0.095, 
the lens width will increase by 47%, and by 35% when 1 increases from 0.3 to 0.9. 
changes in the depth of the lens 

The greatest 
H, are observed when the parameter p is varied; when its 

value is reduced, i.e. when the head is reduced on the side of saline water from 0.25 to 0.15, 
the magnitude of If1 will increase by more than 26%. 

The first section of Table 1 shows that the dependence of the lens size on the width of 
the reservoir is not monotonic: the quantities 2L and HI take their maximum values 6.0697 and 
2.0914 for values of 7, equal to 0.9 and 0.7: respectively. 

Computations have shown that for the given combination of physical parameters the point 
N at which the flows separate falls at the line of separation BC for the following values of 
the physical parameters: I> 1, p > 0.3,O < E < 0.15, D > 0.1 and S > 0.3. It is clear that when the 
point N lies on the segment BM, when II= H,. 

The analysis of the dependence of the filtration flow rates Qe and Qd on the defining 
parameters of the scheme reduces to the following. The width of the reservoir exerts the 
greatest influence on these quantities. When 1 is increased four-fold the flow rates Q, and 
Qd increase by 6.1 and 16 times respectively, and the flow Qe 
the flow through the drain Qd 

from the reservoir may exceed 
by 6 or more times for small values of l(lc0.5). At these 

values of 1 the amount of water lost by evaporation from the free surface may also exceed the 
amount of water absorbed by the drain. Thus for 1= 0.3 we have Q, = 0.194 and Qd = 0.101, 
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and hence Qc zz 2Q*. When the width of the reservoir is increased further, cor- 
responding to an insignificant increase in the value of Qe, we have a significant increase 
in the drainage. When i- 1.2, we have Q, = 0.181 and Q,, ~1.62, i.e. we now have Qdz OQ?. 

We note that for the values of the parameters 11. F, D and S given in Table 1 and 2, we 
have the approximate equality Q,=_ 2.4Qd. 

The author thanks V.M. Entov for useful advice and comments. 
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